
Four-Dimensional Processing of Deformable Cardiac PET Data

Gregory J Klein
Center for Functional Imaging, Lawrence Berkeley National Laboratory

University of California, 1 Cyclotron Road, Berkeley, CA 94720

Abstract
A 4D deformable motion algorithm is described for

use in the motion compensation of gated cardiac PET. The
algorithm makes use of temporal continuity and a non-uni-
form elastic material model to provide improved estimates
of heart motion between time frames.Temporal continuity
is enforced by two methods. First, a prediction motion field
is calculated using an assumption of constant particle
velocity between time frames. Second, incremental motion
fields are used as initializations for the estimation of
motion fields between distant time frames. The prediction
fields augment the algorithm’s ability to estimate motion
between noisy adjacent time frames, and the concatenated
incremental motion fields improve estimation for large
deformations. The estimated motion fields are used to
establish a voxel correspondence between volumes, and
produce a motion compensated composite volume.

1. INTRODUCTION

The left ventricle of the heart deforms by thickening
and twisting as it beats during the cardiac cycle. For imag-
ing devices which require longer than the time of the car-
diac cycle to acquire data, like positron emission
tomography (PET), this deformation induces blur propor-
tional to the motion of the cardiac tissue. A method to
combat the blurring is to perform what is called a gated
cardiac acquisition. In this method, data are acquired over
many cardiac cycles, and are divided into separate storage
locations based on the time since the last cardiac R-wave.
Typically, gated cardiac PET acquisitions divide each car-
diac cycle into 50-100 msec time frames and then sum the
data into the appropriate time frame over all cardiac cycles
for an acquisition period ranging from 5 to 60 minutes.
When each data set is reconstructed into an image volume,
the images show the heart motion captured as a set of
“freeze frames.” Unfortunately, because the data have been
divided into many different time frames, each reconstruc-
tion appears rather noisy due to a lack of statistics. We
present here a summing technique which improves the
contrast to noise characteristics of the images while com-

pensating for the blur due to cardiac contractile motion.
Each time frame is deformed using a non-rigid transfor-
mation so that the shape of the heart in the deformed vol-
ume matches a reference shape at end-diastole. By
summing together the deformed volumes, the contrast to
noise properties of the composite volume improve while
the motion blur is reduced.

The approach presented here is unique from past
efforts in modeling deformable motion in that it uses the
temporal information present in the four-dimensional (4D)
dataset directly to estimate a dense Lagrangian motion
field. Recognizing that the cardiac contraction produces a
cyclic, smooth motion between frames enables the algo-
rithm to better estimate the motion than would an algo-
rithm using only two time frames in isolation.

2. RELATED WORK

A large body of work now exists that describes differ-
ent techniques for deforming a three-dimensional (3D)
voxel volume to match features in another 3D volume.
Nearly all algorithms are composed of two main compo-
nents. First, an image matching criterion serves as a driv-
ing force to push deformed image features into
correspondence, and second, a regularization criterion pre-
vents deformations which are physically unlikely or mean-
ingless. For example, Song and Leahy [1] and later Zhou
[2] proposed a 3D extension of Horn’s [3] two-dimen-
sional optical flow algorithm as a method to calculate the
motion at each voxel, or amotion field, between ultrafast
computed tomography (CT) sequences of the heart. Their
method assumed that voxel values corresponding to the
same physical features in two time frames conserve their
value, much like the brightness constraint in Horn’s 2D
formulation. Therefore an image difference between two
time frames could serve as an driving force. Regulariza-
tion of the motion field was carried out by imposing a gen-
eral smoothness and divergence-free constraint on the
field.

Bajcsy and others were among the first to incorporate
a more realistic material model as a regularization con-
straint [4, 5]. These authors used a linear elastic model to



constrain the deformation for brain datasets being warped
to match a common atlas. Christensen built on this work,
incorporating a viscous fluid model that could better
model large deformations [6]. Others have combined
material models implemented in a voxelized volume with
surface-based methods [7, 8, 9]. Still others have found
success using simpler regularization techniques such as a
9-parameter globally linear model [10], or low-dimen-
sional global polynomial or spline-based deformations
[11, 12, 13].

Techniques exploiting the 4D continuity of image
sequences have been reported in the 2D optical flow litera-
ture for some time now [14,15,16]. However, perhaps
because many deformable motion algorithms have been
applied to the matching of different brain datasets, it is not
surprising that these techniques did not consider 4D meth-
ods. Some have proposed 4D methods for tracking cardiac
features, but these techniques have been used primarily in
surface, not voxel-based deformation algorithms [17, 18].
Recently, encouraging results have also been obtained for
tracking phase contrast cardiac magnetic resonance (MR)
data using Kalman filtering [19] and Fourier spatiotempo-
ral constraint models [20, 21]. 4D techniques have also
been used to track features in cardiac tagged MR data [22]
Though the 4D aspects of these techniques have primarily
been applied to a relatively sparse set of data points, they
may be applicable to the dense Lagrangian motion field
description used here.

Due to its low temporal and spatial resolution com-
pared to CT or MR imaging, cardiac PET and single pho-
ton emission computed tomography (SPECT) imagery
pose a particularly difficult problem for the application of
motion tracking. Though gated SPECT data has been used
routinely for estimation of wall motion or ejection frac-
tion, currently available motion analysis techniques typi-
cally focus on characterizing global motion parameters
instead of estimating voxel-by-voxel point correspon-
dences [23,24,25,18]. The present work will describe an
algorithm for using 4D information to augment the estima-
tion of a dense motion vector field for cardiac PET data.

3. METHOD

3. 1. General Cost Function

The approach described here is an extension of our
previous 3D algorithm which uses a non-uniform regular-
ization function inspired from elastic material models
[26,27]. The goal of the algorithm is to find a dense
Lagrangian vector field describing the motion of each
voxel between a source volume and a reference volume.
This vector field, which we call the motion field, is used
together with the source volume and a forward voxel sam-

pling scheme to create a deformation volume closely
matching the reference. Because numerous motion fields
could exist that would result in a deformation volume sim-
ilar to the reference, but representing a physically implau-
sible deformation, the motion field is regularized by an
energy function constraining the source volume as if it was
a physical volume composed of elastic materials being
deformed by external forces. By choosing elastic parame-
ters that describe the physical properties of the heart and
adjacent tissue, estimation of physically implausible
motion fields is prevented. Basically, then, the algorithm
finds an appropriate balance between image matching
forces and elastic constraining forces.

The algorithm is described as follows. Define a 4D
voxel volume, , where represents the
voxel index and is the time index. A
dense Lagrangian motion field describing the motion from
time frame to is defined as

. The
deformed volume of is defined as

. With these definitions, we can
express an image matching error term, ,
between a reference image at time, and a source image
at time given by

(1)

where  is a scalar weighting term.
A non-uniform elastic regularization term for the

motion field based on a linear elastic strain energy model
is given by

(2)

where and are elasticity terms called the Lamé con-
stants, and where derivatives of the motion field are
denoted as . Though it is known that cardiac
tissue exhibits nonlinear, anisotropic elastic properties that
depend not only on tissue orientation, but also the muscle
fiber direction and other factors [28, 29], we make a sim-
plifying assumption that it may be modeled as a locally
isotropic model described by just two terms, and . The
drastic difference in elastic properties between the cardiac
tissue and adjacent regions, such as the blood pool inside
the left ventricle and lung tissue, is modeled by using a bi-
valued vector field for the Lamé constants. That is, voxels
classified as cardiac tissue are modeled by one pair of
and values which enforce the incompressible nature of
this tissue. Voxels not belonging to the heart are character-
ized by Lamé constants which allow compression and
which allow the material to be stretched with less force.
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It will be assumed in this paper that an adequate seg-
mentation of the left ventricle may always be obtained.
Because cardiac PET data results in images with the left
ventricle as the principal feature in the field of view, a
rough segmentation of the heart suitable for this nonuni-
form elastic description may usually be obtained by
smoothing each image volume considerably in the spatial
domain and then using a simple thresholding operation. It
is acknowledged that this simple segmentation operation
may not be adequate for all cardiac datasets, especially for
diseased hearts, where perfusion defects result in region-
ally reduced voxel intensities. For these cases, more pow-
erful segmentation techniques are available [24,25].

A third energy term is derived from the smooth 4D
nature of the deformation. A prediction motion field

computed from the temporally adjacent time
frames is used to form the error term

(3)

The Lagrangian description of voxel motion allows us to
view each point in the image volume as a particle moving
at a specific velocity. The prediction field assumes that the
velocity remains the same between time frames.

The overall estimation problem is to find a motion
field consistent with elastic material properties that best
matches the deformed volume to the reference volume via
a minimization of:

. (4)

Solution to the problem is obtained via a Taylor
expansion of around in a fashion
similar to the technique originally proposed by Zhou [2].
During the minimization process, the true motion field,

, is assumed to be composed of the current esti-
mate, , plus a small delta motion field,

that is to be computed. Expressing the overall
cost function in terms of the Taylor expansion,

and substituting
the expression, , for results in a quadratic func-
tional in that can be minimized via the calcu-
lus of variations [30]. The resulting Euler-Lagrange
equations are solved using finite differencing techniques
and a conjugate gradient method. For the simulations pre-
sented in this paper, Neumann boundary conditions were
enforced [1].

3. 2. 4D Processing
Ultimately, it is desired that the image data in all time

frames be deformed so that they match the shape of the
heart at a single reference time. We choose end-diastole as
the reference time. Here, the left ventricle is relaxed and
the ventricular chamber is at its maximum size. Unfortu-
nately, we have found in our prior efforts using only two

isolated time frames in the 3D implementation of this
algorithm that the algorithm sometimes has problems con-
verging to a well-matched deformation when the shape of
the heart changes dramatically between two time frames.
As one might expect, it is much easier to estimate the
motion between two adjacent time frames where the
motion is small than it is to estimate the motion between
remote time frames, for example between end-diastole and
end-systole. Perhaps this is partially due to the use of the
implicit linear approximation in the Taylor expansion for
the motion field. For large deformations, the Taylor expan-
sion may no longer be a valid approximation. Another
problem confounding the motion estimation is that the lin-
ear elastic strain energy model assumes small, infinitesi-
mal motions. The calculated strain energy using the linear
model is not as good a description of the material proper-
ties if large deformations are present [31].

The difficulty of obtaining a good estimation of the
motion field for large deformations based on only two time
frames is the principal impetus for investigating a 4D
approach. As depicted in Fig. 1, it is known that motion of
any voxel corresponding to cardiac tissue will be a cyclic,
smooth motion, and the trajectory of the voxel described
by the Lagrangian motion field should be a continuous,
closed path. Because of this, we may first solve the easier
problem of estimating the small motion between adjacent
time frames, i.e., , and then propagate these
incremental motion fields to obtain the motion fields with
respect to the reference frame, .

Implementation of the algorithm is therefore a nested
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Fig. 1. 4D Motion Field Estimation. Motion
estimation is begun by estimating adjacent time
frames so that the deformations are relatively small
and easier to track. Once motion between adjacent
time frames has been estimated, it may be
successively incorporated into a direct estimation
of each frame to a single reference frame.
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series of loops. Within the innermost loop, the conjugate
gradient iteration is used to calculate an optimal

between two time frames. The next loop level
is over all time frames. Because a single calculation of

does not usually obtain an adequate motion
field, the calculation of the delta motion field over all
times must be performed iteratively. Typically, 5-15 itera-
tions are required for the conjugate gradient loop, and also
5-15 calculations of the outer loop are required before the
algorithm converges. Finally, the algorithm alternates
between computation of motion fields for adjacent time
frames and computation of motion fields all pointing to the
reference. The algorithm is initialized with a zero motion
field between all time frames and the adjacent motion field
is first computed. These incremental motion fields are used
to initialize the composite motion fields all pointing to the
reference frame. For example, in order to estimate the
motion field between time frames 4 and 1, a composite ini-
tialization motion field for  is given by

. (5)

Likewise, computation of the adjacent time motion fields
from the distant ones is carried out in a similar manner.
Alternating between the two forms of motion fields during
the iteration insures consistency between the two. Note
that when adding motion fields, the fields cannot simply be
added as one would normally add two matrices of the
same size. Rather, the motion fields must be forward pro-
jected to insure correct vector addition.

3. 3. Forward Sampling and Volume Summing

In an application where the deformed volumes are
being summed together to form a composite volume, care
must be taken during transformation sampling so that the
composite volume represents a sum of all voxels from the
source volumes. Many deformation algorithms make use
of an Eulerian description of the motion field, which
describes a particle’s motion with respect to its final posi-
tion in the deformation volume. This type of motion field
representation requires a backward sampling scheme, typi-
cally where the value of each voxel in the deformed vol-
ume, is obtained by a trilinear sampling
at the non-discrete location, . Such backward sam-
pling does not guarantee that each voxel in the source vol-
ume will contribute to the deformation volume. We
employ a forward sampling scheme [32] which distributes
each voxel value of the source volume using a normalized
Gaussian weighting in a single-pass calculation of the
deformation as follows:

(6)

In this formulation, represents the region where a
deformed voxel would contribute via trilinear interpolation

to a voxel at location, , and represents the interpola-
tion weighting factor. Sampling in this manner insures that
every voxel from all source volumes will contribute to the
composite volume. Once each source volume has been
deformed via the forward sampling technique, a motion
corrected composite volume is formed by simple summing
over all time frames.

4. RESULTS

The 4D algorithm was testing using two datasets. The
first of these is a mathematical cardiac phantom based on
ellipsoidal building blocks forming the human torso [33].
The second dataset is from PET data obtained during a
gated cardiac study of a human subject. Fig. 2 shows the
ellipsoidal phantom. A 60x60x37x6 voxel dataset was
used to represent PET images of the heart at six time
frames ranging from end-diastole to end-systole, and then
back again.

Fig. 3 compares the results of deforming end-systole
(frame 4) to match end-diastole (frame 1) using the 4D
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Fig. 2. Ellipsoidal Phantom with six time frames.
Top row shows three orthogonal slices through the
reference time frame 1. For reference, the
intersection of each orthogonal plane with another
is labeled as (T,C or S). Bottom two rows shows the
transverse slice for all time frames. Edges of the
reference frame are shown on all times to show the
motion. The thick ellipsoid represents the left
ventricle; the thin ellipsoids represent the right
ventricle and atria.
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technique verses a 3D technique. The top and bottom rows
of images compare the 3D and 4D technique where the
image matching weighting factor, , and the elastic mate-
rial parameters were set to the same value for both simula-
tions. Comparing with the three views of the reference
volume shown in Fig. 2, it is seen that though both datasets
deformed in roughly the correct direction (i.e. expansion),
the 3D simulation had considerably more error. The
deformed heart appears closer to systole and is more noisy
for the 3D case. This is also indicated quantitatively by
comparing the sum of squares difference between the ref-
erence and the deformation volumes for the 3D and 4D
cases.

Another attempt using a considerably larger image
matching weighting factor for the 3D case is shown in the
middle row of Fig. 3. Here it is seen that even in the
absence of noise, the algorithm cannot be forced to prop-
erly deform a source volume just by increasing the cost of
image matching difference. Instabilities arise during the
minimization process which can lead to artifacts, even
though the overall sum of squares difference is less than
for the small image gamma case.

Fig. 4 shows the desired result for the motion com-
pensation algorithm in the noise free case. The first two
rows of images show a simple sum of the six time frames
uncorrected for motion blur, and a difference image

between the sum and the end diastole time frame. Because
this is a simple sum of the original time frames, the wall
thickness is blurred proportionally to the overall motion,
effectively creating a blurred thickness that is the sum of
the diastole and systole images. In contrast, the motion
compensated sum and its corresponding difference image
are seen in the bottom two rows. Though there are slight
differences between the motion compensated volume and
the reference gate, the algorithm was able to deform all the
time frames so that they matched the reference quite
closely.

The simulation using the mathematical phantom did
not include noise, so there was no improvement in the
image quality of the single end-diastole time frame when
compared with the motion corrected sum. To show how
the motion compensation technique can improve image
quality, we can examine the algorithm’s performance
using real PET data from a human subject. Fig. 5 shows

Fig. 3. Comparison of 3D vs. 4D deformation. Two
attempts at deforming frame 4 to frame 1 using a
3D technique are only partially successful. The 4D
technique using information from adjacent time
frames was able to produce superior results.

3D Deformation: Systole --> Diastole: Sq. err=1738

Large Image Gamma): Systole --> Diastole: Sq Err=1188

4D Deformation: Systole --> Diastole: Sq Err=933
Transverse Coronal Sagittal

γ I

Fig. 4. Comparison of ungated phantom data to
motion compensated sum. Top two rows show a
direct sum of the six time frames and a difference
image between the sum and the reference volume.
The bottom two rows show the motion
compensated sum and corresponding difference
image. Blurring due to cardiac contractile motion is
decreased in the motion compensated sum.

Ungated Volume

Ungated Volume - Diff. Image w. Frame 1

Motion Compensated Sum - Diff. Image w. Frame 1

Motion Compensated Sum

Transverse Coronal Sagittal



transverse slices through the left ventricle for the first six
time frames of a cardiac dataset that was divided into nine
100 msec gates. In order to recognize the features in these
data, the images have been smoothed considerably in the
spatial domain. The transverse slice in the figure shows
how the left ventricular walls contract and thicken as the
heart cycle progresses from end-diastole in frame 1 to end-
systole in frame 4. To produce a motion compensated
composite volume, all volumes must be deformed so that
the shape of the left ventricle appears as it does in frame 1.

Fig. 6 gives an example of the superior performance
of the 4D algorithm over the 3D technique. The top row of
the figure shows transverse, coronal and sagittal slices

through a deformed volume where only time frames 1 and
3 were used in the calculation. Because of the large defor-
mations necessary to match corresponding voxels in these
two volumes, it appears that the algorithm had trouble esti-
mating the true motion field, and thus produced a
deformed volume with artifacts. In contrast, the bottom
row of images shows the corresponding slices through a
deformed volume that had been calculated using the full
4D information. Though we have no gold standard in this
case, the deformed volume appears to be a much more rea-
sonable estimate.

An example of the results of motion compensation for
this human study are seen in Fig. 7. The images shown
here have been smoothed considerably less in the spatial
domain than the data seen in Figs. 5 and 6. The top row of
images shows three orthogonal slices through an unproc-
essed sum of all nine gates, representing the way the data
would look for an ungated PET acquisition. Here it is seen
that the walls of the heart appear blurred due to the con-
tractile motion. As one would expect, the resulting image
is an average of the cardiac shape between all time frames
between end-diastole and end-systole. The middle row of
images shows a single time frame at end-diastole spatially
smoothed to the same extent as the ungated sum. Though
there is less motion blur in this single time frame, the lack
of PET statistics results in a reconstructed image with
much noise, with probably no better clinical value than the

Frame 1 Frame 3Frame 2

Frame 4 Frame 5 Frame 6

Fig. 5. First six 100 msec time frames from a human
gated cardiac PET. The left ventricle is the principle
feature in each transverse slice. End diastole is
seen at frame 1. For motion compensation, all time
frames must be deformed to match the shape of the
heart at frame 1.

Fig. 6. Comparison of 3D vs. 4D deformations for
real PET data. Attempts at deforming the systole
volume to match the reference using only two time
frames produced artifacts (top). In contrast, the
technique using all time frames was able to
produce a more faithful deformation (bottom).

3D Deformation: Systole --> Diastole

4D Deformation: Systole --> Diastole
Transverse Coronal Sagittal

Fig. 7. Motion compensation results. Ungated data
(top) suffers from blurring due to contractile
motion. A single time frame at the same level of
spatial smoothing has much less motion blur
(middle), but is very noisy due to lack of statistics.
The compensated sum (bottom) has less motion
blur and better contrast to noise characteristics.

Ungated Volume

Single Time Frame at End-Diastole

Motion Compensated Gated Sum

Transverse Coronal Sagittal



ungated data. The motion compensated dataset is shown in
the bottom row. Here, the 4D technique was used to esti-
mate the motion between each time frame and the refer-
ence frame. All volumes were then deformed and
summed. It is seen that the motion compensated volume
has better image quality due to inclusion of more PET data
as well as considerably less motion blur.

5. DISCUSSION AND SUMMARY

Results presented here indicate that the characteristic
of temporal continuity in a 4D cardiac PET dataset may be
exploited to improve the performance of a motion estima-
tion algorithm. In our experience, the principal advantage
to the 4D technique when compared to a technique using
only two time frames is that the ability to more accurately
estimate large deformations is dramatically improved. We
have found that for the 3D case, estimation of motion
between greatly differing time frames is possible, for
example, a direct estimation of the motion between end
diastole and end systole; however, selection of the image
matching and elastic material parameters is much more
sensitive.

Temporal continuity is enforced by two methods in
this algorithm. First is by means of a prediction motion
field, which makes the rather simple assumption of con-
stant particle velocity between time frames. Second, tem-
poral continuity is exploited by the use of concatenated
incremental motion fields that initialize the estimation of
motion fields between distant time frames. The prediction
fields augment the algorithm’s ability to estimate motion
between noisy adjacent time frames, and the concatenated
incremental motion fields allow improved estimation for
large deformations.

In its current form, the prediction field calculation is a
crude approximation, since it assumes constant velocity
between time frames. For a cyclic motion like the motion
of the heart, the deformation is not described by a constant
velocity, but instead actually reverses in direction. Indeed,
we have found that for the noise-free case, the prediction
field can actually degrade performance in time frames
where the particle velocity is changing, for example, in the
time frames before and after end-systole. However, for
noisy data, we have found that even this rough estimate of
a prediction field is beneficial. Future work will focus on
more accurate prediction models, such as the Kalman fil-
tering or Fourier techniques that have been used success-
fully in a similar motion tracking application [19,20, 21].

It is acknowledged that the results presented here are
almost exclusive qualitative in nature. As is often the case
when using real PET data obtained from a human subject,
comparison with a gold standard is difficult. The mathe-
matical phantom allows for a more controlled comparison

between truth and the algorithm’s results; however, the
ellipsoidal description of this phantom makes it difficult to
assess the exact motion vectors between corresponding
points. Work is underway to develop a torso phantom with
a parametric description that would allow more detailed
comparison. We have used such parametrically described
phantoms in the past [32], but these have been only iso-
lated left ventricle models and perhaps are not as good a
test as a full torso model. It is also important to test the
algorithm on a phantom in a noise environment consistent
with PET reconstructions.

Based on arguments regarding the aperture problem in
optical flow, and recognizing the limited spatial and tem-
poral resolution of even the best cardiac PET scanners, it
may be debated whether any algorithm could be expected
to follow the complex cardiac motion for small features
within the cardiac walls. An overall goal of this algorithm
is to provide more spatially and temporally resolved
images of the heart, so that clinicians may better identify
cardiac defects that would be seen as nonuniformities in
radiotracer uptake. If there are no defects, a PET image of
the left ventricle is relatively featureless. On the other
hand, if a small defect does exist, it may be too noisy in a
single time frame or too blurred in a spatially or tempo-
rally smoothed volume for a motion estimation algorithm
to track. However, results using the ellipsoidal phantom
indicate that when combined with an adequate material
model regularization, the feature space of even this smooth
phantom is rich enough for adequate tracking. Therefore,
the “aperture problem” as noted in the 2D optical flow
community may not be problematic here. It is hoped that
future testing on more realistic phantoms will answer
whether the algorithm can adequately track small features.
At this point though, we can at least say that the motion
compensation algorithmreducesmotion blur. It is hoped
that future algorithm improvements will provide even
more accurate motion estimations.
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